Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
BMC Genomics ; 25(1): 468, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745142

RESUMO

BACKGROUND: Plant-specific TIFY proteins are widely found in terrestrial plants and play important roles in plant adversity responses. Although the genome of loquat at the chromosome level has been published, studies on the TIFY family in loquat are lacking. Therefore, the EjTIFY gene family was bioinformatically analyzed by constructing a phylogenetic tree, chromosomal localization, gene structure, and adversity expression profiling in this study. RESULTS: Twenty-six EjTIFY genes were identified and categorized into four subfamilies (ZML, JAZ, PPD, and TIFY) based on their structural domains. Twenty-four EjTIFY genes were irregularly distributed on 11 of the 17 chromosomes, and the remaining two genes were distributed in fragments. We identified 15 covariate TIFY gene pairs in the loquat genome, 13 of which were involved in large-scale interchromosomal segmental duplication events, and two of which were involved in tandem duplication events. Many abiotic stress cis-elements were widely present in the promoter region. Analysis of the Ka/Ks ratio showed that the paralogous homologs of the EjTIFY family were mainly subjected to purifying selection. Analysis of the RNA-seq data revealed that a total of five differentially expressed genes (DEGs) were expressed in the shoots under gibberellin treatment, whereas only one gene was significantly differentially expressed in the leaves; under both low-temperature and high-temperature stresses, there were significantly differentially expressed genes, and the EjJAZ15 gene was significantly upregulated under both low- and high-temperature stress. RNA-seq and qRT-PCR expression analysis under salt stress conditions revealed that EjJAZ2, EjJAZ4, and EjJAZ9 responded to salt stress in loquat plants, which promoted resistance to salt stress through the JA pathway. The response model of the TIFY genes in the jasmonic acid pathway under salt stress in loquat was systematically summarized. CONCLUSIONS: These results provide a theoretical basis for exploring the characteristics and functions of additional EjTIFY genes in the future. This study also provides a theoretical basis for further research on breeding for salt stress resistance in loquat. RT-qPCR analysis revealed that the expression of one of the three EjTIFY genes increased and the expression of two decreased under salt stress conditions, suggesting that EjTIFY exhibited different expression patterns under salt stress conditions.


Assuntos
Eriobotrya , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Eriobotrya/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta , Cromossomos de Plantas/genética
2.
J Clin Pharmacol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38659369

RESUMO

Previous studies found that histamine H2 receptor antagonists (H2RAs) had blood pressure lowering and cardioprotective effects, but the impact of H2RAs on the survival outcomes of critically ill patients with essential hypertension is still unclear. The aim of this study was to investigate the association of H2RAs exposure with all-cause mortality in patients with essential hypertension based on Medical Information Mart for Intensive Care III database. A total of 17,739 patients were included, involving 8482 H2RAs users and 9257 non-H2RAs users. Propensity score matching (PSM) was performed to improve balance between 2 groups that were exposed to H2RAs or not. Kaplan-Meier survival curves were used to compare the cumulative survival rates and multivariable Cox regression models were performed to evaluate the association between H2RAs exposure and all-cause mortality. After 1:1 PSM, 4416 pairs of patients were enrolled. The results revealed potentially significant association between H2RAs exposure and decreased 30-day, 90-day, and 1-year mortalities in multivariate analyses (HR = 0.783, 95% CI: 0.696-0.882 for 30-day; HR = 0.860, 95% CI: 0.778-0.950 for 90-day; and HR = 0.883, 95% CI: 0.811-0.961 for 1-year mortality, respectively). Covariate effect analyses showed that the use of H2RAs was more beneficial in essential hypertension patients with age ≥ 60, BMI ≥ 25 kg/m2, coronary arteriosclerosis, stroke, and acute kidney failure, respectively. In conclusion, H2RAs exposure was related to lower mortalities in critically ill patients with essential hypertension, which provided novel potential strategy for the use of H2RAs in essential hypertension patients.

3.
EMBO Mol Med ; 16(4): 1027-1045, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448545

RESUMO

Clinical deployment of oligonucleotides requires delivery technologies that improve stability, target tissue accumulation and cellular internalization. Exosomes show potential as ideal delivery vehicles. However, an affordable generalizable system for efficient loading of oligonucleotides on exosomes remain lacking. Here, we identified an Exosomal Anchor DNA Aptamer (EAA) via SELEX against exosomes immobilized with our proprietary CP05 peptides. EAA shows high binding affinity to different exosomes and enables efficient loading of nucleic acid drugs on exosomes. Serum stability of thrombin inhibitor NU172 was prolonged by exosome-loading, resulting in increased blood flow after injury in vivo. Importantly, Duchenne Muscular Dystrophy PMO can be readily loaded on exosomes via EAA (EXOEAA-PMO). EXOEAA-PMO elicited significantly greater muscle cell uptake, tissue accumulation and dystrophin expression than PMO in vitro and in vivo. Systemic administration of EXOEAA-PMO elicited therapeutic levels of dystrophin restoration and functional improvements in mdx mice. Altogether, our study demonstrates that EAA enables efficient loading of different nucleic acid drugs on exosomes, thus providing an easy and generalizable strategy for loading nucleic acid therapeutics on exosomes.


Assuntos
Exossomos , Distrofia Muscular de Duchenne , Animais , Camundongos , Distrofina/genética , Camundongos Endogâmicos mdx , Exossomos/metabolismo , Morfolinos/metabolismo , Morfolinos/farmacologia , Morfolinos/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Oligonucleotídeos/metabolismo , Oligonucleotídeos/uso terapêutico
4.
Front Endocrinol (Lausanne) ; 15: 1275816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390212

RESUMO

Background: Xuebifang (XBF), a potent Chinese herbal formula, has been employed in managing diabetic peripheral neuropathy (DPN). Nevertheless, the precise mechanism of its action remains enigmatic. Purpose: The primary objective of this investigation is to employ a bioinformatics-driven approach combined with network pharmacology to comprehensively explore the therapeutic mechanism of XBF in the context of DPN. Study design and Methods: The active chemicals and their respective targets of XBF were sourced from the TCMSP and BATMAN databases. Differentially expressed genes (DEGs) related to DPN were obtained from the GEO database. The targets associated with DPN were compiled from the OMIM, GeneCards, and DrugBank databases. The analysis of GO, KEGG pathway enrichment, as well as immuno-infiltration analysis, was conducted using the R language. The investigation focused on the distribution of therapeutic targets of XBF within human organs or cells. Subsequently, molecular docking was employed to evaluate the interactions between potential targets and active compounds of XBF concerning the treatment of DPN. Results: The study successfully identified a total of 122 active compounds and 272 targets associated with XBF. 5 core targets of XBF for DPN were discovered by building PPI network. According to GO and KEGG pathway enrichment analysis, the mechanisms of XBF for DPN could be related to inflammation, immune regulation, and pivotal signalling pathways such as the TNF, TLR, CLR, and NOD-like receptor signalling pathways. These findings were further supported by immune infiltration analysis and localization of immune organs and cells. Moreover, the molecular docking simulations demonstrated a strong binding affinity between the active chemicals and the carefully selected targets. Conclusion: In summary, this study proposes a novel treatment model for XBF in DPN, and it also offers a new perspective for exploring the principles of traditional Chinese medicine (TCM) in the clinical management of DPN.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Medicamentos de Ervas Chinesas , Humanos , Biologia Computacional , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/genética , Simulação de Acoplamento Molecular , Farmacologia em Rede , Medicamentos de Ervas Chinesas/farmacologia
5.
Heliyon ; 10(4): e25569, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384527

RESUMO

Background: Although dilated cardiomyopathy (DCM) is a prevalent form of cardiomyopathy, the molecular mechanisms underlying its pathogenesis and progression remain poorly understood. It is possible to identify and validate DCM-associated genes, pathways, and miRNAs using bioinformatics analysis coupled with clinical validation methods. Methods: Our analysis was performed using 3 mRNA datasets and 1 miRNA database. We employed several approaches, including gene ontology (GO) analysis, KEGG pathway enrichment analysis, protein-protein interaction networks analysis, and analysis of hub genes to identify critical genes and pathways linked to DCM. We constructed a regulatory network for DCM that involves interactions between miRNAs and mRNAs. We also validated the differently expressed miRNAs in clinical samples (87 DCM ,83 Normal) using qRT-PCR.The miRNAs' clinical value was evaluated by receiver operating characteristic curves (ROCs). Results: 78 differentially expressed genes (DEGs) and 170 differentially expressed miRNAs (DEMs) were associated with DCM. The top five GO annotations were collagen-containing extracellular matrix, cell substrate adhesion, negative regulation of cell differentiation, and inflammatory response. The most enriched KEGG pathways were the Neurotrophin signaling pathway, Thyroid hormone signaling pathway, Wnt signaling pathway, and Axon guidance. In the PPI network, we identified 10 hub genes, and in the miRNA-mRNA regulatory network, we identified 8 hub genes and 15 miRNAs. In the clinical validation, we found 13 miRNAs with an AUC value greater than 0.9. Conclusion: Our research offers novel insights into the underlying mechanisms of DCM and has implications for identifying potential targets for diagnosis and treatment of this condition.

6.
Magn Reson Med ; 91(6): 2403-2416, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38263908

RESUMO

PURPOSE: The study aims to assess the potential of referenceless methods of EPI ghost correction to accelerate the acquisition of in vivo diffusion tensor cardiovascular magnetic resonance (DT-CMR) data using both computational simulations and data from in vivo experiments. METHODS: Three referenceless EPI ghost correction methods were evaluated on mid-ventricular short axis DT-CMR spin echo and STEAM datasets from 20 healthy subjects at 3T. The reduced field of view excitation technique was used to automatically quantify the Nyquist ghosts, and DT-CMR images were fit to a linear ghost model for correction. RESULTS: Numerical simulation showed the singular value decomposition (SVD) method is the least sensitive to noise, followed by Ghost/Object method and entropy-based method. In vivo experiments showed significant ghost reduction for all correction methods, with referenceless methods outperforming navigator methods for both spin echo and STEAM sequences at b = 32, 150, 450, and 600 smm - 2 $$ {\mathrm{smm}}^{-2} $$ . It is worth noting that as the strength of the diffusion encoding increases, the performance gap between the referenceless method and the navigator-based method diminishes. CONCLUSION: Referenceless ghost correction effectively reduces Nyquist ghost in DT-CMR data, showing promise for enhancing the accuracy and efficiency of measurements in clinical practice without the need for any additional reference scans.


Assuntos
Imagem Ecoplanar , Processamento de Imagem Assistida por Computador , Humanos , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído , Imagens de Fantasmas , Espectroscopia de Ressonância Magnética , Artefatos , Encéfalo , Algoritmos
7.
BMC Genomics ; 25(1): 12, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166720

RESUMO

BACKGROUND: GRAS is a family of plant-specific transcription factors (TFs) that play a vital role in plant growth and development and response to adversity stress. However, systematic studies of the GRAS TF family in kiwifruit have not been reported. RESULTS: In this study, we used a bioinformatics approach to identify eighty-six AcGRAS TFs located on twenty-six chromosomes and phylogenetic analysis classified them into ten subfamilies. It was found that the gene structure is relatively conserved for these genes and that fragmental duplication is the prime force for the evolution of AcGRAS genes. However, the promoter region of the AcGRAS genes mainly contains cis-acting elements related to hormones and environmental stresses, similar to the results of GO and KEGG enrichment analysis, suggesting that hormone signaling pathways of the AcGRAS family play a vital role in regulating plant growth and development and adversity stress. Protein interaction network analysis showed that the AcGRAS51 protein is a relational protein linking DELLA, SCR, and SHR subfamily proteins. The results demonstrated that 81 genes were expressed in kiwifruit AcGRAS under salt stress, including 17 differentially expressed genes, 13 upregulated, and four downregulated. This indicates that the upregulated AcGRAS55, AcGRAS69, AcGRAS86 and other GRAS genes can reduce the salt damage caused by kiwifruit plants by positively regulating salt stress, thus improving the salt tolerance of the plants. CONCLUSIONS: These results provide a theoretical basis for future exploration of the characteristics and functions of more AcGRAS genes. This study provides a basis for further research on kiwifruit breeding for resistance to salt stress. RT-qPCR analysis showed that the expression of 3 AcGRAS genes was elevated under salt stress, indicating that AcGRAS exhibited a specific expression pattern under salt stress conditions.


Assuntos
Genoma de Planta , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Estresse Fisiológico/genética , Tolerância ao Sal
8.
Infection ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265608

RESUMO

BACKGROUND AND PURPOSE: The need for dose adjustment of caspofungin in patients with hepatic impairment is controversial, especially for those with Child-Pugh B or C cirrhosis. The purpose of this study was to investigate the safety and efficacy of standard-dose caspofungin administration in Child-Pugh B and C cirrhotic patients in a real-world clinical setting. PATIENTS AND METHODS: The electronic medical records of 258 cirrhotic patients, including 67 Child-Pugh B patients and 191 Child-Pugh C patients, who were treated with standard-dose of caspofungin at the Second Affiliated Hospital of Chongqing Medical University, China, from March 2018 to June 2023 were reviewed retrospectively. The white blood cells (WBC), hepatic, renal and coagulation function results before administration and post administration on days 7, 14 and 21 were collected, and the efficacy was assessed in all patients at the end of caspofungin therapy. RESULTS: Favorable responses were achieved in 137 (53.1%) patients while 34 (13.2%) patients died. We observed that some patients experienced an increase of prothrombin time (PT) or international normalized ratio (INR), or a decrease of WBC, but no exacerbation of hepatic or renal dysfunction were identified and no patient required dose interruption or adjustment because of an adverse drug reaction during treatment with caspofungin. CONCLUSIONS: Standard-dose of caspofungin can be safely and effectively used in patients with Child-Pugh B or C cirrhosis, and we appealed to re-assess the most suitable dosing regimen in this population to avoid a potential subtherapeutic exposure.

9.
Environ Sci Technol ; 58(5): 2313-2322, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38266164

RESUMO

Mineral adsorption-induced molecular fractionation of dissolved organic matter (DOM) affects the composition of both DOM and OM adsorbed and thus stabilized by minerals. However, it remains unclear what mineral properties control the magnitude of DOM fractionation. Using a combined technique approach that leverages the molecular composition identified by ultrahigh resolution 21 T Fourier transform ion cyclotron resonance mass spectrometry and adsorption isotherms, we catalogue the compositional differences that occur at the molecular level that results in fractionation due to adsorption of Suwannee River fulvic acid on aluminum (Al) and iron (Fe) oxides and a phyllosilicate (allophane) species of contrasting properties. The minerals of high solubility (i.e., amorphous Al oxide, boehmite, and allophane) exhibited much stronger DOM fractionation capabilities than the minerals of low solubility (i.e., gibbsite and Fe oxides). Specifically, the former released Al3+ to solution (0.05-0.35 mM) that formed complexes with OM and likely reduced the surface hydrophobicity of the mineral-OM assemblage, thus increasing the preference for adsorbing polar DOM molecules. The impacts of mineral solubility are exacerbated by the fact that interactions with DOM also enhance metal release from minerals. For sparsely soluble minerals, the mineral surface hydrophobicity, instead of solubility, appeared to be the primary control of their DOM fractionation power. Other chemical properties seemed less directly relevant than surface hydrophobicity and solubility in fractionating DOM.


Assuntos
Matéria Orgânica Dissolvida , Minerais , Adsorção , Solubilidade , Minerais/química , Alumínio , Óxidos
10.
Artigo em Inglês | MEDLINE | ID: mdl-38237259

RESUMO

Steroids play a vital role in animal survival, promoting growth and development when administered appropriate concentration exogenously. However, it remains unclear whether steroids can induce gonadal development and the underlying mechanism. This study assessed sea cucumber weights post-culturing, employing paraffin sections and RNA sequencing (RNA-seq) to explore gonadal changes and gene expression in response to exogenous steroid addition. Testosterone and cholesterol, dissolved in absolute ethanol, were incorporated into sea cucumber diets. After 30 days, testosterone and cholesterol significantly increased sea cucumber weights, with the total weight of experimental groups surpassing the control. The testosterone-fed group exhibited significantly higher eviscerated weight than the control group. In addition, dietary steroids influenced gonad morphology and upregulated genes related to cell proliferation,such as RPL35, PC, eLF-1, MPC2, ADCY10 and CYP2C18. Thees upregulated differentially expressed genes were significantly enriched in the organic system, metabolism, genetic information and environmental information categories. These findings imply that steroids may contribute to the growth and the process of genetic information translation and protein synthesis essential for gonadal development and gametogenesis.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Stichopus/genética , Pepinos-do-Mar/genética , Aumento de Peso , Proliferação de Células , Gametogênese , Testosterona , Colesterol
11.
Small ; 20(10): e2305678, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875729

RESUMO

Small-scale and flexible acoustic probes are more desirable for exquisite objects like human bodies and complex-shaped components than conventional rigid ones. Herein, a thin-film flexible acoustic sensor (FA-TES) that can detect ultra-broadband acoustic signals in multiple applications is proposed. The device consists of two thin copper-coated polyvinyl chloride films, which are stimulated by acoustic waves and contact each other to generate the triboelectric signal. Interlocking nanocolumn arrays fabricated on the friction surfaces are regarded as a highly adaptive spacer enabling this device to respond to ultra-broadband acoustic signals (100 Hz-4 MHz) and enhance sensor sensitivity for film weak vibration. Benefiting from the characteristics of high shape adaptability and ultrawide response range, the FA-TES can precisely sense human physiological sounds and voice (≤10 kHz) for laryngeal health monitoring and interaction in real-time. Moreover, the FA-TES flexibly arranged on a 3D-printed vertebra model can effectively and accurately diagnose the inner defect by ultrasonic testing (≥1 MHz). It envisions that this work can provide new ideas for flexible acoustic sensor designs and optimize real-time acoustic detections of human bodies and complex components.


Assuntos
Acústica , Ultrassom , Humanos , Ultrassonografia , Som , Fricção
12.
Circulation ; 149(9): 684-706, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-37994595

RESUMO

BACKGROUND: The majority of people with diabetes are susceptible to cardiac dysfunction and heart failure, and conventional drug therapy cannot correct diabetic cardiomyopathy progression. Herein, we assessed the potential role and therapeutic value of USP28 (ubiquitin-specific protease 28) on the metabolic vulnerability of diabetic cardiomyopathy. METHODS: The type 2 diabetes mouse model was established using db/db leptin receptor-deficient mice and high-fat diet/streptozotocin-induced mice. Cardiac-specific knockout of USP28 in the db/db background mice was generated by crossbreeding db/m and Myh6-Cre+/USP28fl/fl mice. Recombinant adeno-associated virus serotype 9 carrying USP28 under cardiac troponin T promoter was injected into db/db mice. High glucose plus palmitic acid-incubated neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes were used to imitate diabetic cardiomyopathy in vitro. The molecular mechanism was explored through RNA sequencing, immunoprecipitation and mass spectrometry analysis, protein pull-down, chromatin immunoprecipitation sequencing, and chromatin immunoprecipitation assay. RESULTS: Microarray profiling of the UPS (ubiquitin-proteasome system) on the basis of db/db mouse hearts and diabetic patients' hearts demonstrated that the diabetic ventricle presented a significant reduction in USP28 expression. Diabetic Myh6-Cre+/USP28fl/fl mice exhibited more severe progressive cardiac dysfunction, lipid accumulation, and mitochondrial disarrangement, compared with their controls. On the other hand, USP28 overexpression improved systolic and diastolic dysfunction and ameliorated cardiac hypertrophy and fibrosis in the diabetic heart. Adeno-associated virus serotype 9-USP28 diabetic mice also exhibited less lipid storage, reduced reactive oxygen species formation, and mitochondrial impairment in heart tissues than adeno-associated virus serotype 9-null diabetic mice. As a result, USP28 overexpression attenuated cardiac remodeling and dysfunction, lipid accumulation, and mitochondrial impairment in high-fat diet/streptozotocin-induced type 2 diabetes mice. These results were also confirmed in neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes. RNA sequencing, immunoprecipitation and mass spectrometry analysis, chromatin immunoprecipitation assays, chromatin immunoprecipitation sequencing, and protein pull-down assay mechanistically revealed that USP28 directly interacted with PPARα (peroxisome proliferator-activated receptor α), deubiquitinating and stabilizing PPARα (Lys152) to promote Mfn2 (mitofusin 2) transcription, thereby impeding mitochondrial morphofunctional defects. However, such cardioprotective benefits of USP28 were largely abrogated in db/db mice with PPARα deletion and conditional loss-of-function of Mfn2. CONCLUSIONS: Our findings provide a USP28-modulated mitochondria homeostasis mechanism that involves the PPARα-Mfn2 axis in diabetic hearts, suggesting that USP28 activation or adeno-associated virus therapy targeting USP28 represents a potential therapeutic strategy for diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Células-Tronco Pluripotentes Induzidas , Ubiquitina Tiolesterase , Animais , Humanos , Camundongos , Ratos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Lipídeos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , PPAR alfa/metabolismo , Estreptozocina/metabolismo , Estreptozocina/uso terapêutico , Ubiquitina Tiolesterase/análise , Ubiquitina Tiolesterase/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-38099524

RESUMO

BACKGROUND: Liver cancer is one of the most prevalent forms of cancer of the digestive system in our country. The most common subtype of this disease is hepatocellular carcinoma (HCC). Currently, treatment options for HCC patients include surgical resection, liver transplantation, radiofrequency ablation, chemoembolization, and biologic-targeted therapy. However, the efficacy of these treatments is suboptimal, as they are prone to drug resistance, metastasis, spread, and recurrence. These attributes are closely related to cancer stem cells (CSCs). Therefore, the utilization of drugs targeting CSCs may effectively inhibit the development and recurrence of HCC. METHODS: HepG2 and Huh7 cells were used to analyze the antitumor activity of emodin by quantifying cell growth and metastasis, as well as to study its effect on stemness. RESULTS: Emodin effectively suppressed the growth and movement of HCC cells. Emodin also significantly inhibited the proliferation of CD44-positive hepatoma cells. CONCLUSION: Emodin shows promise as a potential therapeutic agent for HCC by targeting CD44-- positive hepatoma cells.

14.
Front Pharmacol ; 14: 1273640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035020

RESUMO

Background: Our previous study reported that histamine H2 receptor antagonists (H2RAs) exposure was associated with decreased mortality in critically ill patients with heart failure (HF) through the same pharmacological mechanism as ß-blockers. However, population-based clinical study directly comparing the efficacy of H2RAs and ß-blockers on mortality of HF patients are still lacking. This study aims to compare the association difference of H2RAs and ß-blockers on mortality in critically ill patients with HF using the Medical Information Mart for Intensive Care III database (MIMIC-III). Methods: Study population was divided into 4 groups: ß-blockers + H2RAs group, ß-blockers group, H2RAs group, and Non-ß-blockers + Non-H2RAs group. Kaplan-Meier curves and multivariable Cox regression models were employed to evaluate the differences of all-cause mortalities among the 4 groups. Propensity score matching (PSM) was used to increase comparability of four groups. Results: A total of 5593 patients were included. After PSM, multivariate analyses showed that patients in H2RAs group had close all-cause mortality with patients in ß-blockers group. Furthermore, 30-day, 1-year, 5-year and 10-year all-mortality of patients in ß-blockers + H2RAs group were significantly lower than those of patients in ß-blockers group, respectively (HR: 0.64, 95%CI: 0.50-0.82 for 30-day; HR: 0.80, 95%CI: 0.69-0.93 for 1-year mortality; HR: 0.83, 95%CI: 0.74-0.93 for 5-year mortality; and HR: 0.85, 95%CI: 0.76-0.94 for 10-year mortality, respectively). Conclusion: H2RAs exposure exhibited comparable all-cause mortality-decreasing effect as ß-blockers; and, furthermore, H2RAs and ß-blockers had additive or synergistic interactions to improve survival in critically ill patients with HF.

15.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958991

RESUMO

Diabetic cardiomyopathy is one of the diabetes mellitus-induced cardiovascular complications that can result in heart failure in severe cases, which is characterized by cardiomyocyte apoptosis, local inflammation, oxidative stress, and myocardial fibrosis. CD38, a main hydrolase of NAD+ in mammals, plays an important role in various cardiovascular diseases, according to our previous studies. However, the role of CD38 in diabetes-induced cardiomyopathy is still unknown. Here, we report that global deletion of the CD38 gene significantly prevented diabetic cardiomyopathy induced by high-fat diet plus streptozotocin (STZ) injection in CD38 knockout (CD38-KO) mice. We observed that CD38 expression was up-regulated, whereas the expression of Sirt3 was down-regulated in the hearts of diabetic mice. CD38 deficiency significantly promoted glucose metabolism and improved cardiac functions, exemplified by increased left ventricular ejection fraction and fractional shortening. In addition, we observed that CD38 deficiency markedly decreased diabetes or high glucose and palmitic acid (HG + PA)-induced pyroptosis and apoptosis in CD38 knockout hearts or cardiomyocytes, respectively. Furthermore, we found that the expression levels of Sirt3, mainly located in mitochondria, and its target gene FOXO3a were increased in CD38-deficient hearts and cardiomyocytes with CD38 knockdown under diabetic induction conditions. In conclusion, we demonstrated that CD38 deficiency protected mice from diabetes-induced diabetic cardiomyopathy by reducing pyroptosis and apoptosis via activating NAD+/Sirt3/FOXO3a signaling pathways.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Sirtuína 3 , Animais , Camundongos , Apoptose , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Mamíferos/metabolismo , Miócitos Cardíacos/metabolismo , NAD/metabolismo , Estresse Oxidativo , Piroptose , Sirtuína 3/metabolismo , Volume Sistólico , Função Ventricular Esquerda
16.
Front Bioeng Biotechnol ; 11: 1250348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026846

RESUMO

Glycocalyx (GCX) is a carbohydrate-rich structure that coats the surface of endothelial cells (ECs) and lines the blood vessel lumen. Mechanical perturbations in the vascular environment, such as blood vessel stiffness, can be transduced and sent to ECs through mechanosensors such as GCX. Adverse stiffness alters GCX-mediated mechanotransduction and leads to EC dysfunction and eventually atherosclerotic cardiovascular diseases. To understand GCX-regulated mechanotransduction events, an in vitro model emulating in vivo vessel conditions is needed. To this end, we investigated the impact of matrix chemical and mechanical properties on GCX expression via fabricating a tunable non-swelling matrix based on the collagen-derived polypeptide, gelatin. To study the effect of matrix composition, we conducted a comparative analysis of GCX expression using different concentrations (60-25,000 µg/mL) of gelatin and gelatin methacrylate (GelMA) in comparison to fibronectin (60 µg/mL), a standard coating material for GCX-related studies. Using immunocytochemistry analysis, we showed for the first time that different substrate compositions and concentrations altered the overall GCX expression on human umbilical vein ECs (HUVECs). Subsequently, GelMA hydrogels were fabricated with stiffnesses of 2.5 and 5 kPa, representing healthy vessel tissues, and 10 kPa, corresponding to diseased vessel tissues. Immunocytochemistry analysis showed that on hydrogels with different levels of stiffness, the GCX expression in HUVECs remained unchanged, while its major polysaccharide components exhibited dysregulation in distinct patterns. For example, there was a significant decrease in heparan sulfate expression on pathological substrates (10 kPa), while sialic acid expression increased with increased matrix stiffness. This study suggests the specific mechanisms through which GCX may influence ECs in modulating barrier function, immune cell adhesion, and mechanotransduction function under distinct chemical and mechanical conditions of both healthy and diseased substrates.

17.
Soc Sci Med ; 339: 116355, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37984180

RESUMO

A prominent issue in China's healthcare sector is the overcrowding of high-tier hospitals, whereas low-tier hospitals and community health centers are severely underutilized. This study aims to examine whether doctor's visit fee and copay differentiated by the level of healthcare providers can change the distribution of outpatient visits across different levels of healthcare providers. By leveraging the exogeneity of the policy change implemented in a megacity in China in 2017, we apply a parametric discontinuity regression model to study the causal impact of differentiated pricing on patients' health-seeking behavior, using a large-scale insurance claim database. We find that the reform of differentiated doctor's visit fee schedule effectively increases the proportion of visits to primary care facilities among all outpatient visits. This effect is driven by a decline in visits to the highest-tier hospitals and an increase in visits to community healthcare centers. Furthermore, the policy effects are more pronounced among the elderly and people with chronic diseases. Our results suggest that shifting the focus of pricing policies from coinsurance to copays while continuing to improve the capacity of primary care facilities is an effective way to facilitate triaging patients into different levels of care without triggering moral hazard.


Assuntos
Hospitais , Aceitação pelo Paciente de Cuidados de Saúde , Humanos , Idoso , Custos e Análise de Custo , China
18.
Chem Biodivers ; 20(12): e202301381, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37968243

RESUMO

Four undescribed steroidal compounds along with twenty known compounds were isolated from n-butanol extracted fraction of the whole plants of Solanum lyratum Thunb (SLNF). Their structures were assigned based on analyses of the extensive spectroscopic data (including MS, 1D/2D NMR, and ECD) or comparisons of the NMR data with those reported. Among the knowns, three compounds were isolated from Solanum plants for the first time, while one compound was isolated from S. lyratum for the first time. In addition, the cytotoxicities of these isolates against human colon SW480 and hepatoma Hep3B cells were evaluated by a MTT assay. And, nine of them and SLNF exhibited significant activities against both SW480 and Hep3B cells, while twelve of them significantly inhibited the activities of SW480 cells. This study allows for the exploitation of chemical markers with potential significance in discrimination of Solanum plants, and uncovers the diverse steroidal constituents from S. lyratum dedicated for its future application in cancer treatment.


Assuntos
Saponinas , Solanum , Humanos , Solanum/química , Saponinas/farmacologia , Esteroides/farmacologia , Estrutura Molecular
19.
Nat Prod Res ; : 1-7, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37794774

RESUMO

A new tetrahydroimidazopyridine named butyl (5R,6R,7S,8S)-5,6,7,8-tetrahydro-6,7,8-trihydroxy-5-(hydroxymethyl)imidazo[1,2-a]pyridine-2-carboxylate(1), together with eight known compounds (2-9), were isolated from the fermentation broth of a marine-derived fungus Paraconiothyrium sp. YK-03. Their chemical structures were elucidated by extensive analysis of one-dimensional and two-dimensional NMR spectroscopy, HR-ESIMS and optical rotation. Among these compounds, compound 1 represented a rare tetrahydroimidazopyridine, and compounds 2-7 were isolated from the Paraconiothyrium species for the first time. A plausible biosynthetic pathway for compound 1 was proposed.

20.
PLoS One ; 18(10): e0293181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37871022

RESUMO

Plum Rains Season (PRS) has the typical characteristics of outdoor air temperature dramatic changes and high air humidity in the hot summer and cold winter region in China. When the outdoor temperature rises rapidly during PRS, the building envelope surface temperature is probably lower than the indoor air dew point temperature, resulting in moisture condensation. This paper evaluates the influence of geographical location and outdoor meteorological parameters on the indoor humidity environment. The effects of critical parameters such as altitude, average temperature, relative humidity, total precipitation, total precipitation days, atmospheric pressure, and wind speed on the building envelope moisture condensation in nine typical cities in the hot summer and cold winter region were simulated and analyzed. The results show that the Condensation Frequency (CFn) in the western, central, and eastern regions reached the highest in April, May, and June, respectively. Among the nine typical cities, Changsha has the highest Condensation Risk (CR). In addition, the altitude, total precipitation, and atmospheric pressure have little effect on the indoor humidity environment, and it is not directly related to CR; The average temperature and total precipitation days were not related to CR in the western and eastern regions and positively correlated with CR in the central region; The wind speed was positively correlated with CR in the western and central regions and negatively correlated in the eastern region; The relative humidity can affect the indoor humidity environment and moisture condensation on the inner surface of walls, when the relative humidity increases, the CR increases.


Assuntos
Poluentes Atmosféricos , Prunus domestica , Estações do Ano , Poluentes Atmosféricos/análise , Umidade , Temperatura , China , Chuva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA